

Komplexierung von 1,3-Dihydro-1,3-diborapentafulven-Derivaten mit Fe(CO)₃-Fragmenten: Synthesen, Kristall- und Elektronenstruktur von μ -(η^4 : η^5 -1,3-Dihydro-1,3-diborapentafulven)-bis(tricarbonyleisen)-Komplexen

Achim Feßenbecker^a, Markus Enders^a, Hans Pritzkow^a, Walter Siebert^{*a}, Isabella Hyla-Kryspin^b und Rolf Gleiter^{*b}

Anorganisch-Chemisches Institut^a und Organisch-Chemisches Institut^b der Universität Heidelberg, Im Neuenheimer Feld 270, W-6900 Heidelberg

Eingegangen am 2. Januar 1991

Key Words: 1,3-Diborapentafulvene / Iron tricarbonyl complexes / Slipped triple-decker / Calculations, ab initio, EH

Complexation of 1,3-Dihydro-1,3-diborapentafulvene Derivatives with $Fe(CO)_3$ Fragments: Syntheses, Crystal and Electronic Structure of μ -(η^4 : η^5 -1,3-Dihydro-1,3-diborapentafulvene)-bis(tricarbonyliron) Complexes

Reactions of the 1,3-diborapentafulvene derivatives 1a-cwith (CO)₃Fe(C₈H₁₄)₂ lead to the violet dinuclear complexes 3a-c, which possess a slipped triple-decker structure. The Xray structure analyses of 3b,c reveal that one Fe(CO)₃ group is pentahapto-coordinated to the 1,3-diborole frame of C₂B₂C=C, whereas the other interacts with the Y-shaped $B_2C=C$ unit. The latter resembles the interaction of $Fe(CO)_3$ with trimethylenemethane. An MO calculation indicates that the formation of 3 occurs by distortion of 1 \cdot Fe(CO)_{3i} the slippage of Fe(CO)_3 from η^5 to η^4 bonding is followed by η^5 coordination of the second Fe(CO)_3 group.

Die 1,3-Dihydro-1,3-diborapentafulven-Derivate $1a^{1,2}$ $1b^{3}$ und $1c^{4}$ wirken mittels der endo- und exocyclischen Doppelbindung als 4-e-Donoren in Metallkomplexen. Durch Umsetzung von 1a,c mit (CO)₃Fe(C₈H₁₄)₂ im Molverhältnis 1:1 entstehen die Tricarbonyleisenkomplexe $2a^{2}$, $2c^{4}$, deren exocyclische C6-Atome der C=C-Doppelbindung stark entschirmt sind (¹³C-NMR 2a: $\delta = 230.5$, 2c:

232). Zwischen dem Eisen- und dem C6-Atom tritt nur eine schwache Wechselwirkung auf. Dies zeigt sich in **2c** durch die im Vergleich mit dem Molybdän-Komplex (CO)₄Mo · (**1a**)¹⁾ (20.1 und 17.3°) geringere Faltung des 1,3-Diborafulven-Rings entlang **B1**-**B3** (9.9°) und an C2 (12.4°) in Richtung auf das Fe-Atom. Trotz des größeren Radius des Mo-Atoms ist der Abstand Fe-C6 (2.82 Å) länger als der entsprechende Mo-C6 Abstand (2.71 Å). Dies hat eine stärkere Abschirmung des C6-Atoms im ¹³C-NMR-Spektrum ($\delta = 157.2$) zur Folge.

Da die Komplexe **2a,c** noch Donor- und Akzeptorfunktionen am Heterocyclus aufweisen bzw. bei **2c** mit dem Dien-System des Benzorings ein weiterer potentieller 4-e-Ligand vorliegt, haben wir die Bildung von Zweikernkomplexen mit 1a-c untersucht. Im Falle von 1a entsteht ein tiefvioletter Zweikernkomplex, für den wir aufgrund der spektroskopischen Daten die Konstitution (**2a**) · Fe(CO)₄ mit Komplexierung der Fe(CO)₄-Gruppe an der exocyclischen Doppelbindung formuliert hatten²). Weitere Untersuchungen zeigten, daß hier der Bis(tricarbonyleisen)-Komplex **3a** vorliegt. Im folgenden berichten wir über die Bildung und Struktur der Zweikernkomplexe **3b** und **3c**.

Ergebnisse und Diskussion

Darstellung und Eigenschaften

Durch Umsetzung von 1a-c mit (CO)₃Fe(C₈H₁₄)₂ im Überschuß entstehen die Komplexe 3a-c. Die Bildung einer Zweikernverbindung mit antifacialer Koordination am Sechs- und am Fünfring von 1c wird nicht beobachtet. Dies steht im Gegensatz zum Ergebnis der analogen Umsetzung mit dem zu 1c isomeren 1,4-Diborabenzo[c]cyclohexadien, wobei der primär gebildete Einkernkomplex⁴ zur antifacialen Bis(tricarbonyleisen)-Verbindung mit komplexiertem 1,4-Diboracyclohexadien und Benzoring weiterreagiert⁵⁾.

Die luftempfindlichen, in Lösung olivgrünen, als Feststoff dunkelvioletten Komplexe $3\mathbf{a} - \mathbf{c}$ lassen sich durch Chromatographie an Silicagel reinigen und aus Hexan umkristallisieren. Die ¹H- und ¹³C-Kernresonanzdaten von $3\mathbf{c}$ weichen mit Ausnahme von C6 ($\delta = 78.9$) nur unwesentlich von denen des Komplexes $2\mathbf{c}$ ab; dies weist auf einen unkomplexierten Benzoring hin. Die Koordination der zweiten Fe(CO)₃-Einheit erfolgt somit unter Einbeziehung der exocyclischen Doppelbindung in die Komplexbindung.

Die ¹¹B-NMR-Werte liegen mit $\delta = 4.8$ (für **3a**¹⁾ und **3c**) und $\delta = 8.0$ (**3b**) im typischen Bereich für antifacial koordinierte Borheterocyclen⁶⁾. Die Massenspektren (70 eV) zeigen für **3c** den Molekülpeak, für **3a** und **3b** nur M⁺ – CO als höchste Masse sowie das für Carbonylkomplexe typische Fragmentierungsmuster mit sukzessivem Verlust von sechs bzw. fünf Carbonylgruppen. Im IR-Spektrum treten sechs bzw. fünf Absorptionsbanden im Carbonylbereich auf. Diese spektroskopischen Daten sind mit zwei inäquivalenten Fe(CO)₃-Gruppen eines diamagnetischen 32-Valenzelektronen-Zweikernkomplexes vereinbar.

Kristallstrukturanalysen von 3b und 3c

Die Röntgenstrukturanalysen zeigen das Vorliegen von antifacialen [Fe(CO)₃]₂-Komplexen mit einer "Slipped"-Tripeldecker-Struktur (Abb. 1,2). In **3b** und **3c** sitzt jeweils eine Fe(CO)₃-Gruppe pentahapto (η^5) über dem Fünfring, wobei die Eisen-Ringatom-Abstände fast mit denen von **2c**⁴⁾ übereinstimmen, während die zweite Fe(CO)₃-Einheit η^4 -gebunden an das Y-Gerüst C=CB₂ koordiniert ist. Dieses Strukturelement hat große Ähnlichkeit mit Tricarbonyleisentrimethylenmethan-Komplexen⁷⁾. Die regenschirmartige Umspannung des Eisenatoms Fe2 in **3b** und **3c** wird durch den kurzen Fe2-C2-Abstand, 1.905; bzw. 1.918 Å, und durch die längeren Abstände Fe2-C6 [2.118 (**3b**); 2.103 Å (**3c**)] sowie Fe2-B1/B3 (2.436, 2.424; 2.375, 2.401 Å) deut-

Abb. 1. Molekülstruktur von 3b

Abb. 2. Molekülstruktur von 3c

lich. Die Unterschiede in den Abständen Fe1-C4,5 (2.139, 2.156 in **3b** und 2.236, 2.227 Å in **3c**) werden durch die schlechteren Donoreigenschaften der C4,5-Atome des Benzorings im Vergleich zu C=C in **3b** hervorgerufen. Die Faltung entlang B1-B3 vergrößert sich in **3c** im Vergleich zum Edukt $2c^{49}$ um 6.4° auf 16.3° , der Winkel Fe1-C2-C6 nimmt um 33.7° durch die neu hinzukommende Fe(CO)₃-Gruppe zu.

Tab. 1. Kristalldaten für 3b und 3c

	3Ъ	30
Formel	C ₂₀ H ₂₄ B ₂ Fe ₂ O ₆	C ₁₈ H ₁₆ B ₂ Fe ₂ O ₆
Molmasse	493.7	461.6
Kristallsystem	triklin	triklin
Raumgruppe	PĪ	PĨ
Zellparameter	a=9.224(9)	a=8.136(4)
[Å] und [°]	b=9.488(9)	b=9.277(5)
	c=14.594(12)	c=14.500(7)
	a=88.27(7)	a=98,74(4)
	β=86.18(8)	β=95.19(4)
	γ=64.13(7)	γ=113.26(3)
Zellvolumen [Å ³]	1146.6	980.1
z	2	2
d _{ber} [gcm ⁻³]	1.43	1.56
μ (Mo-K α) [cm ⁻¹]	12.3	14.3
Kristallgröße [mm]	0.2.0.6.0.9	0.2.0.3.0.7
Transmissionsk oeff.	(0.71-1.00)	(0.35-0.53)
2 🗛 [°]	50°	56°
hkl-Bereich	±10, ±11,17	±10, ±12,19
Reflexe		
gemessen	4024	4737
beobachtet	3058 (I>20 ₁)	2977(I>2σ _τ)
Verfeinerung	-	+
anisotrop	Fe,C,B,O	Fe,C,B,O
isotrop	н	н
starre Gruppen	Methyl an B1 und B3	
Zahl der Param ete r	346	317
R-Werte	R=0.032, R _w =0.038	R=0.051,R _w =0.061
max. Restelektronen- dichte [eÅ ⁻³]	0.3	0.6

Elektronenstruktur von 3c

Mit Hilfe des Isolobalprinzips⁸⁾ gelingt eine qualitative Beschreibung der Bindungsverhältnisse in 3c. Da ein Fe(CO)₃-Fragment bei der Komplexbildung zwei Elektro-

Tab. 2. Atomparameter für 3b. \overline{U} ist 1/3 der Spur des orthogonalisierten Tensors U

		<u></u>		
Atom	x	У	z	ΰ
Fe1	0.20707(5)	0.29178(5) 0.27924(3)	0.040
Fe2	0.64650(5)	0.19177(5) 0.22219(3)	0.044
B1	0.3822(4)	0.2817(4)	0.1618(2)	0.059
C2	0.4502(3)	0.1 7 78(3)	0.25641(19)	0.036
в3	0.4193(4)	0.3140(4)	0.3339(2)	0.043
C4	0.2943(4)	0.4669(3)	0.2920(2)	0.043
C5	0.2719(3)	0.4492(3)	0.1979(2)	0.041
C6	0.5679(3)	0.0173(3)	0.2586(2)	0.044
C7	0.3934(5)	0.2301(4)	0.0568(2)	0.059
C8	0.6204(6)	-0.0677(5)	0.3478(3)	0.066
C9	0.578 7(6)	-0.0949(5)	0.1840(3)	0.064
C10	0.4748(5)	0.2980(5)	0.4357(2)	0.064
C11	0.2113(5)	0.6246(5)	0.3397(3)	0.072
C12	0.1296(7)	0.6354(7)	0.4293(4)	0.089
C13	0.3165(8)	0.7101(7)	0.3322(5)	0.091
C14	0.1664(4)	0.5806(4)	0.1379(3)	0.068
C15	0.0300(6)	0.5868(6)	0.1038(4)	0.086
C16	0.2531(8)	0.6648(7)	0.0890(4)	0.098
C17	0.0041(4)	0.4331(4)	0.3061(3)	0. 0 63
01	-0.1255(3)	0.5189(4)	0.3249(2)	0.103
C18	0.1495(4)	0.1852(5)	0.2016(3)	0.068
02	0.1115(4)	0.1186(5)	0.1528(2)	0.116
C19	0.2112(4)	0.1759(4)	0.3786(2)	0.053
03	0.2161(3)	0.0994(3)	0.44121(19)	0.080
C20	0.6387(4)	0.3823(4)	0.1920(3)	0.060
04	0.6450(4)	0.4956(3)	0.1699(2)	0.094
C21	0.8079(4)	0.1274(5)	0.2964(3)	0.071
05	0.9094(4)	0.0840(5)	0.3462(2)	0.116
C22	0.7780(4)	0.0810(4)	0.1286(3)	0.060
06	0.8565(3)	0.0079(3)	0.0689(2)	0.089

Tab. 3. Atomparameter für 3c. \overline{U} siehe Tab. 2

Atom	x	У	Z	Ū
Fe1	0.14922(8)	0.38122(8)	0.29460(4)	0.036
Fe2	0.32356(8)	0.06670(8)	0.22936(4)	0.037
B1	0.1008(7)	0.1607(7)	0.1864(3)	0.038
C2	0.2139(5)	0.1921(5)	0.2945(3)	0.035
B3	0.4080(7)	0.3435(7)	0.2982(4)	0.038
C4	0.3759(6)	0.4178(6)	0.2115(3)	0.039
C5	0.2056(6)	0.3161(6)	0.1503(3)	0.039
C6	0.1899(6)	0.0675(6)	0.3469(3)	0.041
C7	0.4910(8)	0.5630(7)	0.1873(4)	0.056
C8	0.4435(9)	0.6024(8)	0.1049(5)	0.068
C9	0.2765(10)	0.5026(8)	0.0450(4)	0.065
C10	0.1595(8)	0.3663(7)	0.0676(3)	0.052
C11	-0.0907(8)	0.0309(8)	0.1315(5)	0.059
C12	0.0042(8)	-0.0668(7)	0.3420(5)	0.060
C13	0.3040(9)	0.1064(8)	0.4447(4)	0.057
C14	0.5825(8)	0.4334(8)	0.3771(4)	0.055
C15	0.0552(7)	0.3346(6)	0.3986(4)	0.051
01	-0.0036(6)	0.3072(6)	0.4657(3)	0.076
C16	-0.0502(7)	0.3903(6)	0.2351(3)	0.049
02	-0.1774(5)	0.3924(6)	0.1972(3)	0.075
C17	0.2660(7)	0.5930(6)	0.3462(3)	0.049
03	0.3381(6)	0.7249(5)	0.3793(3)	0.078
C18	0.4158(7)	0.1217(6)	0.1237(4)	0.048
04	0.4742(6)	0.1515(5)	0.0567(3)	0.069
C19	0.1966(7)	-0.1425(7)	0.1854(4)	0.052
05	0.1054(6)	-0.2763(5)	0.1594(3)	0.078
C20	0.5128(7)	0.0437(7)	0.2872(4)	0.052
06	0.6339(6)	0.0339(6)	0.3258(3)	0 .087

nen zur Verfügung stellt, liegt das $C=CB_2$ -Gerüst im Komplex 2c formal als Dianion vor, das isoelektronisch mit dem Trimethylenmethan-Diradikal ist und deshalb als 4-e-Donor eine zweite Fe(CO)₃-Einheit koordinieren kann.

Zur Klärung der Bildung von 3c aus 2c wurden EH- und ab-initio-MO-Rechnungen durchgeführt, um die Geometrieänderungen und den wahrscheinlichen Reaktionsablauf verfolgen zu können. Zum Verständnis der Bindungsverhältnisse von **3c** diskutieren wir zuerst die Elektronenstruktur von **2c** in Form eines Wechselwirkungsdiagramms zwischen den Grenzorbitalen der Fragmente **1c** und Fe(CO)₃. Entscheidend für die Stabilisierung von **2c** ist die Wechselwirkung der MOs π_3 - π_6 (linke Seite von Abb. 3) des π -Systems mit dem halb besetzten e-Satz der Fe(CO)₃-Einheit⁹). es resultiert eine Stabilisierung der besetzten π -MOs π_3 und π_4 und eine Aufspaltung des ehemaligen e-Satzes in 17a'' und 26a'. Die Energiedifferenz zwischen HOMO (17a'') und LUMO (26a') wird zu 1.2 eV vorausgesagt, dies macht den Singulett-Grundzustand von **2c** wahrscheinlich. Bewegt man die Fe(CO)₃-Einheit in **2c** auf das Exomethylen-Kohlenstoffatom zu (**2c'** in Abb. 4), so daß eine η^4 -Koordination

Tab. 4. Ausgewählte Abstände [Å] und Winkel [°] für 3b und 3c

	30	3b		3c	3b
Fel-Bl	2.253(5)	2.257(3)	C5-B1-C2	104.2(3)	104.3(2)
C2	2.020(4)	2.029(2)	B1-C2-B3	104.7(3)	103.1(2)
B3	2.264(4)	2.249(3)	C2-B3-C4	104.6(3)	104.1(2)
C4	2.236(4)	2.139(2)	B3-C4-C5	111.7(3)	112.0(2)
C5	2.227(4)	2.156(2)	C4-C5-B1	112.2(3)	112.5(2)
Fe2-B1	2.375(4)	2.436(3)	C6-C2-B1	123.5(3)	126.3(2)
C2	1.918(4)	1.905(2)	C6-C2-B3	124.2(3)	125.4(2)
B 3	2.401(5)	2.424(3)			
C6	2.103(4)	2.118(2)			
B1-C2	1.666(6)	1.660(4)			
B1-C5	1.555(7)	1.546(4)			
C2-B3	1.636(6)	1.662(4)			
B3-C4	1.571(6)	1.550(4)			
C4-C5	1.445(6)	1.429(4)			
C2-C6	1.438(5)	1.433(3)			

Abb. 3. MO-Diagramm von 2c

entsteht und das aromatische 6- π -System des Benzolrings nicht mehr gestört ist, dann wird der Abstand zwischen HOMO (17a'') und LUMO (26a') stark verkleinert. Dies läßt für 2c' einen Triplett-Grundzustand erwarten. Ein stabiler Singulett-Grundzustand wird dann erreicht, wenn eine zweite Fe(CO)₃-Einheit antifacial im Fünfring hinzukommt (3c). Der Ablauf 2c \rightarrow 2c' (links in Abb. 4) ist mit einer Energiebarriere von 13 kcal/mol verbunden.

Abb. 4 (rechts) beschreibt einen alternativen Reaktionsablauf, in dem zunächst das C6-Atom der exocyclischen Doppelbindung C2=C6 durch Drehung um C2 vom Fe1-Atom entfernt wird. Dabei bleibt die pentahapto-Anordnung des Fe(CO)₃-Komplexfragments erhalten. Auch bei dieser Strukturänderung wird der Abstand zwischen HOMO und LUMO von 2c' verkleinert. Eine Stabilisierung des Singulettzustands erfolgt durch die Addition einer zweiten Fe(CO)₃-Gruppe an das Y-Gerüst C=CB₂. Die Änderungen $2c \rightarrow 2c'$ (rechts in Abb. 4) sind mit einer Energiebarriere von 32 kcal/mol verbunden. Auf der Basis dieser Rechnungen ist die Bildung von 3c aus 2c durch den in Abb. 4 (links) beschriebenen Ablauf um etwa 19 kcal/mol günstiger.

Die Bildung der Zweikernkomplexe **3b,c** mit einer "Slipped"-Tripeldeckeranordnung zeigt, daß eine symmetrische, bifaciale μ,η^5 -Koordination an den Fünfring unter starker

Abb. 4. Alternative Bildung von 3c durch Komplexierung von 2c mit Fe(CO)₃-Fragment

Polarisierung der exocyclischen Doppelbindung und Ausbildung eines paramagnetischen, 32-VE-Tripeldeckerkomplexes nicht realisiert wird. Im Falle der Komplexierung von 1a mit zwei (C_3H_3)Ni-Fragmenten entsteht ein diamagnetischer Tripeldeckerkomplex¹⁰, der 30 VE¹¹) besitzt und aufgrund der NMR-Daten symmetrisch vorliegt. Kürzlich haben Herberich et al.¹²⁾ über die Synthese und Struktur eines "Slipped"-Dirhodiumtripeldecker-Komplexes (30 VE) mit einem 3,4-Diborafulven als Brückenliganden berichtet. Ein (COD)Rh-Fragment ist pentahapto an den C₃B₂-Ring und das andere η^4 an das Trimethylenmethan-Gerüst gebunden, in Lösung (25°C) wird NMR-spekroskopisch Fluktuation beobachtet. Die Komplexe (3,4-C = CC₂B₂)[RhCOD]₂ und (1,3-C = CB₂C₂)[Fe(CO)₃]₂ (**3b**, c) sind nahezu isostrukturell, unterscheiden sich aber in der Zahl der Valenzelektronen.

Wir danken der Deutschen Forschungsgemeinschaft (SFB 247), dem Land Baden-Württemberg, dem Fonds der Chemischen Industrie, der BASF AG und der Degussa AG für die Förderung dieser Arbeit.

Experimenteller Teil

 μ -(η^4 : η^5 -4,5-Diethyl-1,3-dihydro-1,3,6,6-tetramethyl-1,3-diborapentafulven)-bis(tricarbonyleisen) (3a): 450 mg (1.25 mmol) (CO)₃Fe(C₈H₁₄)₂ und 100 mg (0.53 mmol) 1a werden bei -20 °C in 60 ml Petrolether (40-60 °C) und 5 ml cis-Cycloocten gelöst. Das Kühlbad wird entfernt und die Mischung 1 h bei 20 °C gerührt. Nach Chromatographie an Kicselgel (Baker, 0.63-2.0 µm) erhält man violettes 3a, das bei 70 °C/10⁻² Torr sublimiert, Ausb. 100 mg (40%), Schmp. 76 °C (Zers.). - IR (C₆D₀): v(CO) = 2075.5 cm⁻¹ (w), 2037.5 (s), 1999 (s), 1996 (s), 1985.5 (m), 1973.5 (m). - MS (EI): m/z (%) = 440 [M⁺ - CO] (20.5), 412 [M⁺ - 2 CO] (66.7), 384 [M⁺ - 3 CO] (11.8), 356 [M⁺ - 4 CO] (100), 328 [M⁺ - 5 CO] (25.1), 300 [M⁺ - 6 CO] (66.7), 169 (31.8).

$$\begin{array}{cccc} C_{18}H_{22}B_2Fe_2O_6 \ (467.7) & \text{Ber. C} \ 46.23 \ H \ 4.74 \\ & \text{Gef. C} \ 45.89 \ H \ 4.75 \end{array}$$

 μ -(η^4 : η^5 -1,3-Dihydro-4-isopropenyl-5-isopropyl-1,3,6,6-tetramethyl-1,3-diborapentafulven)-bis(tricarbonyleisen) (**3b**)

1b: Eine Lösung von 1,3-Dihydro-octamethyl-1,3-diboraradialen³⁾ 0.50 g (2.34 mmol) in 20 ml Toluol werden 10 d unter Rückfluß erhitzt. Nach Entfernen des Toluols i. Vak. wird 1b bei 80 °C/0.5 Torr destilliert, Ausb. 0.32 g (64%). – ¹H-NMR (C₆D₆): $\delta = 1.09$ (s, 3H, BCH₃), 1.17 (d, 6H, ³J(HH) = 7.0 Hz, CHCH₃), 1.19 (s, 3H, BCH₃), 1.80 (m, 3H, H₂C = CCH₃), 1.95 [s, 6H, C(CH₃)₂], 3.03 [sept, 1H, ³J(HH) = 7.0 Hz, CH(CH₃)₂], 4.56 (m, 1H, HHC = CCH₃), 5.01 (m, 1H, HHC = CCH₃). – ¹³C-NMR (C₆D₆): $\delta = 7.4$ (BCH₃), 9.5 (BCH₃), 22.5 (CH₃), 24.1 (CH₃), 26.4 (CH₃), 31.4 [C(CH₃)₂], 109.5 (=CH₂), 146.7/154.4 [= C(CH₃)₂, = CCH₃]. – ¹¹B-NMR (C₆D₆): $\delta = 71.8$. – EI-MS: m/z (%) = 214 [M⁺] (53.1), 199 [M⁺ – CH₃] (27.5), 41 [C₃H₅⁺] (100).

3b: Umsetzung und Aufarbeitung wie bei **3a:** Aus 60 mg (0.28 mmol) **1b** und 0.22 g (0.57 mmol) (CO)₃Fe(C₈H₁₄)₂ werden 80 mg (58%) **3b** erhalten, Schmp. 126–128 °C, Subl. 60 °C/10⁻³ Torr. – ¹H-NMR (C₆D₆): $\delta = -0.19$ (s, 3H, BCH₃), -0.17 (s, 3H, BCH₃), 1.07 [d, 3H, ³J(HH) = 6.9 Hz, CH(CH₃)₂], 1.43 [d, 3H, ³J(HH) = 6.9 Hz, CH(CH₃)₂], 2.03 (m, 3H, =CCH₃), 2.16 [s, 3H, =C(CH₃)₂], 2.25 [s, 3H, =C(CH₃)₂], 2.94 [sept, 1H, ³J(HH) = 6.9 Hz, CH(CH₃)₂], 4.66 (m, 1H, CH₂), 5.02 (m, 1H, CH₂). $-^{13}$ C-NMR (C₆D₆): $\delta = 4$ (BCH₃), 23.0, 25.1, 25.3, 31.5, 32.2, 32.4 (5 × CH₃, CH), 82.6 [=C(CH₃)₂], 114.7 (=CH₂), 145.0 (=CMe), 184 (BC), 209.2 (CO), 210.8 (CO). – EI-MS: *m/z* (%) = 466 [M⁴ – CO]

(19.2), 438 $[M^+ - 2 CO]$ (41.6), 410 $[M^+ - 3 CO]$ (5.5), 382 $[M^+ - 4 CO]$ (76.3), 354 $[M^+ - 5 CO]$ (30.3), 326 $[M^+ - 6 CO]$ (100). - IR (Pentan): $v(CO) = 2037.5 \text{ cm}^{-1}$ (vs), 2000.5 (m), 1995.5 (s), 1992.0 (m), 1983.5 (m).

> C₂₀H₂₄B₂Fe₂O₆ (493.7) Ber. C 48.66 H 4.90 Gef. C 49.25 H 5.20

 $\mu - (\eta^4:\eta^5-1,3-Dihydro-1,3,10,10-tetramethyl-1,3-dibora-4,5-ben-1,3-ben$ zopentafulven)-bis(tricarbonyleisen) (3c): Zu 0.10 g (0.31 mmol) 2c in 1 ml C₈H₁₄ und 10 ml Petrolether (40-60 °C) werden 0.20 g (0.55 mmol) (CO)₃Fe(C₈H₁₄)₂ gegeben. Es wird 12 h gerührt. Nach Entfernen aller flüchtigen Anteile im Hochvak. wird der braune Rückstand in Petrolether ($40-60^{\circ}$ C) aufgenommen und an Kieselgel chromatographiert. Ausb. 90 mg (72%) 3c, Schmp. 121-123°C (aus Hexan). $- {}^{1}$ H-NMR (200 MHz, C₆D₆): $\delta = 7.50$ (m, 2H), 7.02 (m, 2H), 2.23 (s, 6, CCH₃), 0.12 (s, 6, BCH₃). - ¹³C-NMR (75.5 MHz, C_6D_6): $\delta = 209.09$ (CO), 209.01 (CO), 135.47 (CH), 130.73 (CH), 78.97 (CCH₃), 31.91 (CCH₃), CB nicht gefunden. - MS/EI: m/z (%) = 462 [M⁺] (6), 434 [M⁺ - CO] (18), 406 [M⁺ - 2 CO] (17), 378 $[M^+ - 3 CO]$ (6), 350 $[M^+ - 4 CO]$ (41), 322 $[M^+ - 4 CO]$ 5 CO] (20), 294 $[M^+ - 6 CO]$ (100). - IR (Hexan): v(CO) =2064 cm⁻¹ (m), 2037.5 (vs), 2007 (m), 2000.5 (m), 1989 (m), 1979 (m).

 $C_{18}H_{16}B_2Fe_2O_6$ (461.6) Ber. C 46.83 H 3.49

Gef. C 47.37 H 4.01

Röntgenstrukturanalyse von 3b und 3c¹³): Kristalldaten und Einzelheiten der Röntgenstrukturanalysen sind in Tab. 1, die Atomparameter in Tab. 2 und 3, ausgewählte Abstände und Winkel in Tab. 4 zusammengestellt. Alle Berechnungen wurden mit den Programmen SHELX-76 und SHELXS-86 durchgeführt¹⁴⁾. Die Messungen erfolgten mit einem Siemens-Stoe-Vierkreisdiffraktometer (Mo- K_{α} -Strahlung, ω -Scan).

CAS-Registry-Nummern

1a: 112375-18-5 / 1b: 131193-62-9 / 2c: 128113-39-3 / 3a: 132940-21-7 / 3b: 132940-22-8 / 3c: 132959-07-0 / (CO)₃Fe(C₈H₁₄)₂: 88657-71-0

- ¹⁾ V. Schäfer, H. Pritzkow, W. Siebert, Angew. Chem. 100 (1988) ²¹ G. Brodt, W. Sicbert, Chem. Ber. 122 (1988) 299; V. Schäfer, H. Pritzkow, W. Sicbert, Chem. Ber. 122 (1989) 401.
 ²² G. Brodt, W. Sicbert, Chem. Ber. 122 (1989) 633.
 ³³ M. Enders, H. Pritzkow, W. Sicbert, Angew. Chem. 103 (1991)
- 80; Angew. Chem. Int. Ed. Engl. 30 (1991) 84.
- ⁴⁾ A. Feßenbecker, H. Schulz, H. Pritzkow, W. Siebert, Chem. Ber. 123 (1990) 2273
- ⁵⁾ H. Schulz, W. Siebert, unveröffentlicht.
- ⁶⁾ W. Siebert, Pure Appl. Chem. 59 (1987) 947, und zitierte Literatur.
- ⁷⁾ A. J. Deeming, Compr. Organomet. Chem. 4 (1982) 447.
- ⁸⁾ R. Hoffmann, Angew. Chem. 94 (1982) 725; Angew. Chem. Int. Ed. Engl. 21 (1982) 711.
- ⁹⁾ T. A. Albright, J. K. Burdett, M.-H. Whangbo, Orbital Interactions in Chemistry, J. Wiley & Sons, New York 1985.
- ¹⁰⁾ V. Schäfer, Dissertation, Universität Heidelberg 1988.
- ¹¹⁾ J. W. Lauher, M. Elian, R. H. Summerville, R. Hoffmann, J. Am. Chem. Soc. 98 (1976) 3219.
- G. E. Herberich, C. Ganter, L. Wesemann, R. Boese, J. Organomet. Chem. 394 (1990) C1-C5.
- ¹³⁾ Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55185, der Autoren und des Zeitschriftenzitats angefordert werden.
- 14) G. M. Sheldrick, SHELX-76, Program for Crystal Structure Determinations, Cambridge 1976; SHELXS-86, Göttingen 1986.

[13/91]